Recent Changes

Yesterday

  1. page Exponential Functions-Target C-Growth Rates-Practice Problems edited ... 11) Solve the following equation: 2x - 4 = 2 - (6 - 3x) \ \\ \textbf{12)}\ \textbf{12) Gra…
    ...
    11) Solve the following equation: 2x - 4 = 2 - (6 - 3x)
    \ \\
    \textbf{12)}\\textbf{12) Graph the line.}\ y=\dfrac{1}{2}x+5\\
    \ \\
    \textbf{13)}\textbf{13) Solve the system.} \ \
    \begin{cases}
    2x+9y=\text{-}4\\
    (view changes)
    6:31 pm
  2. page Exponential Functions-Target C-Growth Rates-Practice Problems edited ... \textbf{12)}\ y=\dfrac{1}{2}x+5\\ \ \\ 13) \textbf{13)} \ \ \begin{cases} 2x+9y=\text{-}…
    ...
    \textbf{12)}\ y=\dfrac{1}{2}x+5\\
    \ \\
    13)\textbf{13)} \ \
    \begin{cases}
    2x+9y=\text{-}4\\
    x-2y=11\\
    \end{cases}

    (view changes)
    6:30 pm
  3. page Exponential Functions-Target C-Growth Rates-Practice Problems edited ... TARGET REVIEW 11) Solve the following equation: 2x - 4 = 2 - (6 - 3x) 12) \ \\ \textbf{…
    ...
    TARGET REVIEW
    11) Solve the following equation: 2x - 4 = 2 - (6 - 3x)
    12)
    \ \\
    \textbf{3)}\\textbf{12)}\ y=\dfrac{1}{2}x+5\\
    \ \\
    13)
    (view changes)
    6:27 pm
  4. page Exponential Functions-Target C-Growth Rates-Practice Problems edited ... TARGET REVIEW 11) Solve the following equation: 2x - 4 = 2 - (6 - 3x) 12) \ \\ \textbf…
    ...
    TARGET REVIEW
    11) Solve the following equation: 2x - 4 = 2 - (6 - 3x)
    12)
    \ \\
    \textbf{3)}\ y=\dfrac{1}{2}x+5\\
    \ \\

    13)
    (view changes)
    6:27 pm
  5. page Exponential Functions-Target C-Growth Rates-Practice Problems edited ... 9. Create a table of values that displays a linear growth with a common difference of 2. 10. …
    ...
    9. Create a table of values that displays a linear growth with a common difference of 2.
    10. Create a table of values that displays a exponential growth with a common ratio of 1.5.
    11)TARGET REVIEW
    11)
    Solve the
    ...
    2 - (4(6 - 4x)3x)
    12)
    13)
    (view changes)
    6:25 pm
  6. page Exponential Functions-Target C-Growth Rates-Practice Problems edited ... 9. Create a table of values that displays a linear growth with a common difference of 2. 10. …
    ...
    9. Create a table of values that displays a linear growth with a common difference of 2.
    10. Create a table of values that displays a exponential growth with a common ratio of 1.5.
    11) Solve the following equation: 2x - 4 = 2 - (4 - 4x)
    12)
    13)

    (view changes)
    6:22 pm
  7. page Exponential Functions-Target B-Comparing Graphs-Practice Problems edited ... \ \ \ \ \text{As} \ x \rightarrow \ \text{-} \infty \ \text{then} \ f(x) \rightarrow \ 0 \\ \…
    ...
    \ \ \ \ \text{As} \ x \rightarrow \ \text{-} \infty \ \text{then} \ f(x) \rightarrow \ 0 \\
    \ \ \ \ \text{As} \ x \rightarrow \ \infty \ \text{then} \ f(x) \rightarrow \ \text{-} \infty \\
    Target ReviewTARGET REVIEW
    10) Write an equation of a line in standard form passing through the points: (4, -2) and (8, -4).
    11) Graph the line: y + 2 = -(x - 4).
    (view changes)
    5:43 pm
  8. page Exponential Functions-Target B-Comparing Graphs-Practice Problems edited ... \ \ \ \ \text{As} \ x \rightarrow \ \text{-} \infty \ \text{then} \ f(x) \rightarrow \ 0 \\ \…
    ...
    \ \ \ \ \text{As} \ x \rightarrow \ \text{-} \infty \ \text{then} \ f(x) \rightarrow \ 0 \\
    \ \ \ \ \text{As} \ x \rightarrow \ \infty \ \text{then} \ f(x) \rightarrow \ \text{-} \infty \\
    Target Review
    10) Write an equation of a line in standard form passing through the points: (4, -2) and (8, -4).
    11) Graph the line: y + 2 = -(x - 4).
    12) Write the following in function form: 2x - 4y = 12

    (view changes)
    5:42 pm

Thursday, January 18

  1. page Exponential Functions-Target A-Exponentially Speaking-Guided Learning edited ... {Discuss this.png} Option 1: You are paid $1000 a year for 20 years. ... are paid $1 1…
    ...
    {Discuss this.png}
    Option 1: You are paid $1000 a year for 20 years.
    ...
    are paid $11 dollar the first year, $22 dollars the second year, $4
    4 dollars
    for the
    Which option would you choose and why?
    Let's graph an exponential function and see what the graph will look like. We have not yet graphed a function of this form. We will be looking to see what the graph looks like. Will it look like a linear function? What will the domain be? What will the range look like? What will the end behavior of the graph be?
    (view changes)
    4:01 am

More